Product designation Centrifugal pump

Product series: PMS... / PMS-T / PSH... ES... / PS... / PSL...

Assembly instructions with associated operating instructions acc. to EC Machinery Directive 2006/42/EC

Version 03

Masthead

These assembly instructions with associated operating instructions pursuant to EC Machinery Directive 2006/42/EC are an integral part of the described product and must be kept for future use. These assembly instructions with associated operating instructions have been prepared in accordance with the established standards and rules for technical documentation, VDI 4500 and EN 292.

© SKF Lubrication Systems Germany GmbH

This documentation is protected by copyright. SKF Lubrication Systems Germany GmbH reserves all rights, including those to the photomechanical reproduction, duplication, and distribution by means of special procedures (e.g., data processing, data media, and data networks) of this documentation in whole or in part. Subject to changes in contents and technical information.

Service

If you have technical questions, please contact the following offices:

SKF Lubrication Systems Germany GmbH Product department Spandau Pumpen Motzener Strasse 35/37 12277 Berlin Germany Tel. +49 (0)30 72002-0 Fax +49 (0)30 72002-261

SpandauPumpen@skf.com www.spandaupumpen.com

Table of contents

Assembly instructions acc. to EC Directive 2006/42/EC

Masthead	2
Service	2
Table of contents	3
Information concerning EC Declaration of	
Conformity and EC Declaration of Incorpora	tion
General information	5
Explanation of safety and informational sym	bols
and safety signal words	5
1. Safety instructions	7
1.1 Intended use	7
1.2 Authorized personnel	8
1.3 Electric shock hazard	8
1.4 Hydraulic pressure hazard	8
1.5 Hazard from rotating components	9
1.6 Hazard from hazardous or dangerous	
substances	9
2. Media	10

S. Assemblies and type designation
3.1 PMS/PMS-T PMS series
3.2 PSH series
3.2 ES series
3.3 PS/PSL series
4. Design and function
4.1 PMS/PMS-T
4.2 PSH
4.1 ES
4.4 PS/PSL
5. Assembly instructions
5.1 Setup
5.2 Port dimensions
5.3 Pipe arrangement
5.4 Pipe connection
5.5 Electrical connection
5.6 Direction of rotation
Operating instructions
6. Transport, delivery, and storage
6.1 Pump units
6.2 Electronic and electrical devices
6.3 General notes
7. Operation and commissioning

3 Assemblies and type designation

8. Shutdown	25
8.1 Temporary shutdown	25
8.2 Permanent shutdown	25
9. Maintenance	26
9.1 General notes	26
10. Faults	27
11. Technical data	31
11.1 Features of PMS/PMS-T	31
11.2 Features of PSH	31
11.3 Features of ES	31
11.4 Features of PS/PSL 4	31
11.5 Mechanical design of PMS/PMS-T	31
11.6 Mechanical design of PSH	31
11.7 Mechanical design of ES	31
11.8 Mechanical design of PS/PSL	32
11.9 Electrical design	32
11.10 Dimensions of PMS/PMS-T	33
11.11 Dimensions of PSH	36
11.12 Dimensions of ES	37
11.13 Dimensions of PS/PSL	38
12. Notes	40

ΕN

ΕN

Information concerning EC Declaration of Conformity and EC Declaration of Incorporation

The product

centrifugal pump

of the series: PMS... / PMS-T... / PSH... / ES... / PS... / PSL...

is hereby confirmed to comply with the essential protection requirements stipulated by the following Directive(s) of the Council on the approximation of laws of the Member States:

- Machinery Directive 2006/42/EC
- Low-Voltage Directive 2006/95/EC
- Electromagnetic Compatibility 2004/108/EC

Notes:

- (a) This declaration certifies compliance with the aforementioned Directives, but does not constitute a guarantee of characteristics.
- (b) The safety instructions in the documentation included with the product must be observed.
- (c) The commissioning of the products here certified is prohibited until the machine, vehicle or similar in which the product is installed conforms with the provisions and requirements of the applicable Directives.

(d) The operation of the products at nonstandard supply voltage, as well as nonadherence to the installation instructions, can negatively impact the EMC characteristics and electrical safety.

We further declare:

٠

- The aforementioned product is, according to EC Machinery Directive 2006/42/EC, Appendix II Part B, designed for installation in machinery / for incorporation with other machinery to form a machine. Within the scope of application of the EC Directive, commissioning shall be prohibited until the machinery in which this part is installed conforms with the provisions of this Directive.
- The aforementioned product may, with reference to EC Directive 97/23/EC concerning pressure equipment, only be used in accordance with its intended use and in conformity with the instructions provided in the documentation. The following must be observed in this regard:

The product is neither designed nor approved for use in conjunction with fluids of Group 1 $\,$

(Dangerous Fluids) as defined in Article 2, Para. 2 of Directive 67/548/EEC of June 27, 1967.

The product is neither designed nor approved for use in conjunction with gases, liquefied gases, pressurized gases in solution, vapors, or such fluids whose vapor pressure exceeds normal atmospheric pressure (1013 mbar) by more than 0.5 bar at their maximum permissible temperature.

When used in conformity with their intended use, the products supplied by SKF Lubrication Systems Germany GmbH do not reach the limit values listed in Article 3, Para. 1, Clauses 1.1 to 1.3 and Para. 2 of Directive 97/23/EC. They are therefore not subject to the requirements of Annex 1 of the Directive. Consequently, they do not bear a CE marking in respect of Directive 97/23/EC. SKF Lubrication Systems Germany GmbH classifies them according to Article 3, Para. 3 of the Directive.

The Declaration of Conformity and Incorporation forms part of the product documentation and is supplied together with the product.

General information

Explanation of safety and informational symbols and safety signal words

You will find these symbols, which warn of specific dangers to persons, material assets, or the environment, next to all safety instructions in these assembly instructions.

Please heed these instructions and proceed with special care in such cases. Please pass all safety instructions to other users

Hazard symbols

DIN 4844-General 2 W000 hazard

DIN 4844-Electricity 2 W008

2 W028

DIN 4844-Hot surface 2 W026

DIN 4844-Slip hazard Instructions attached directly to the equipment, such as

- rotational direction arrows and ٠
- fluid connection labels ٠

must be followed. Replace such signs if they become illegible.

Safety signal words and their meaning

Signal word	Meaning
Danger!	Danger of bodily injury
Warning!	Danger of damage to property or the environment
Note	Additional information

Prohibition signs

You are responsible!

Please read the assembly instructions thoroughly and follow the safety instructions.

Informational symbols

	Note
\Rightarrow	Prompts an action
•	Used for itemizing
>	Refers to other facts, causes or
	consequences
*	Provides additional information

Εľ

Product designation Centrifugal pump

Product series: PMS... / PMS-T... / PSH... ES... / PS... / PSL... **Assembly instructions** acc. to EC Machinery Directive 2006/42/EC

1. Safety instructions

Please observe the following safety instructions to ensure trouble-free functioning of the pump and to prevent damage.

The operator of the described product must ensure that the assembly instructions are read and understood by all persons tasked with the assembly, operation, maintenance, and repair of the product. The assembly instructions must be kept readily available.

Note that the assembly instructions form part of the product and must accompany the product if sold to a new owner.

The described product is manufactured in accordance with the generally accepted rules and standards of industry practice and with occupational safety and accident prevention regulations. Risks may, however, arise from its usage and may result in physical harm to persons or damage to other material assets. Therefore the product may only be used in proper technical condition and in observance of the assembly instructions. In particular, any malfunctions which may affect safety must be remedied immediately.

Appropriate safety measures must be taken according to the parameters of the media being supplied.

Safety mechanisms on the device must not be damaged, deactivated, rendered inoperable, or replaced by parts that have not been expressly approved by SKF Lubrication Systems Germany GmbH.

In addition to the assembly instructions, statutory regulations and other general regulations for accident prevention and environmental protection must be observed and applied.

1.1 Intended use

All products from SKF Lubrication Systems Germany GmbH may be used only for their intended purpose and in accordance with the information in the product's assembly instructions. Spandau's metal **PMS, PS/PSL** and **PSH** centrifugal immersion pumps are intended for pumping emulsions (including with chemical additives), oils, water with anti-rust additive, and heat-transfer oils.

Stainless steel **ES** centrifugal immersion pumps from Spandau Pumps are made of stainless steel are intended for pumping inks, water-based paints, varnishes, emulsions, water (including deionized), oils, and cleaning fluids.

All pumps are designed for vertical installation.

Any other use is deemed non-compliant with the intended use and could result in damage, malfunction, or even injury.

Only media approved for the type of pump may be fed. Unsuitable media may result in pump failure and potentially severe injury or death and property damage.

Unauthorized alterations to the pump and the use of unapproved spare parts and accessories are prohibited and nullify the warranty.

If feeding a fluid whose density and/or viscosity deviates from that of approved media, ensure that energy requirements are met in consideration of the hydraulic output.

Worn-out units must be rendered inoperable and then disposed of properly.

In particular, the described product is neither designed nor approved for use in conjunction with fluids of Group 1 (Dangerous Fluids) as defined in Article 2, Para. 2 of Directive 67/548/EEC of June 27, 1967.

The described product is neither designed nor approved for use in conjunction with gases, liquefied gases, pressurized gases in solution, vapors, or such fluids whose vapor pressure exceeds normal atmospheric pressure (1013 mbar) by more than 0.5 bar at their maximum permissible temperature.

Unless specially indicated otherwise, products from SKF Lubrication Systems Germany GmbH are not approved for use in potentially explosive areas as defined in the ATEX Directive 94/9/EC.

1.2 Authorized personnel

Only gualified technical personnel may install, operate, maintain, and repair the products described in the assembly instructions. Qualified technical personnel are persons who have been trained, assigned and instructed by the operator of the final product into which the described product is incorporated.

Such persons are familiar with the relevant standards, rules, accident prevention regulations, and assembly conditions as a result of their training, experience, and instruction. They are gualified to carry out the required activities and in doing so recognize and avoid potential hazards.

The definition of gualified personnel and the prohibition against employing non-gualified personnel are laid down in DIN VDE 0105 and IEC 364.

1.3 Electric shock hazard

Electrical connections for the described product may only be established by gualified and trained personnel authorized to do so by the operator, and in observance of the local conditions for connections and local regulations (e.g., DIN, VDE). Serious injury or death and property damage may result from improperly connected products.

Performing work on an energized pump or product may result in serious injury or death

Assembly, maintenance, and repair work may only be performed on products that have been de-energized by gualified technical personnel.

The supply voltage must be switched off before opening any of the product's components.

1.4 Hydraulic pressure hazard

The described product is pressurized during operation. The product must therefore be depressurized before starting assembly, maintenance or repair work, or any system modifications or system repairs.

1.5 Hazard from rotating components

PMS... / PMS-T... / PSH... ES... / PS... / PSL...

Touching the rotating impeller during startup, shutdown, trial run, setup, fault-finding, fault resolution, maintenance, or inspection can result in severe injury.

Touching the pump in the area of the intake opening is prohibited during operation.

1.6 Hazard from hazardous or dangerous substances

Safety measures must be taken according to the parameters of the media in use, especially in the case of hazardous or dangerous substances.

Leakage occurring during the feeding of hazardous or dangerous substances must be removed in such a way that it presents no risk to persons or the environment and in observation of statutory provisions.

2. Media

Pump type	PMS/PMS-T	PSH	ES	PS/PSL
Media	 Emulsion, including with chemical additives Oils Water with anti-corrosion additive Water-based paints Heat-transfer oils 	 Emulsions, including with chemical additives Oils Lubricants Water with anti-rust additive Heat-transfer oils 	 Solvent-based inks Water-based paints Varnishes Water, including deionized Emulsions Oils Cleaning fluids 	 Water emulsions, including with chemical additives Oils Lubricants Water with anti-rust additive Heat-transfer oils
Ambient temperature	max. 40°C	max. 40°C	max. 40°C	max. 40°C
Permissible contamination of medium	Please contact manufacturer	Please contact manufacturer	Please contact manufacturer	Please contact manufacturer PSL <u>slurp design</u> for heavily aerated fluids
Temperature range of medium	PMS standard design: 0°C to +80°C PMS-T material design: -70°C to +170°C	-30℃ to +80℃	+5°C to +80°C	0°C to +80°C
Density/viscosity	Check motor output if using media with density or viscosity differing from that of water.	Check motor output if using media with density or viscosity differing from that of water.	Check motor output if using media with density or viscosity differing from that of water.	Check motor output if using media with density or viscosity differing from that of water.

Special pumps with slurp operation are available for <u>aerated</u> fluids. Their special design provides a constant flow rate even if the medium contains air pockets.

3. Assemblies and type designation

3.1 PMS/PMS-T PMS series

Highly wear-resistant metal **PMS/PMS-T** centrifugal pumps for a wide variety of industrial fluids are available in 13 different sizes. The sizes differ chiefly in terms of dimensions and delivery output, but offer the same functions.

See the rating plate for the size and designation of your pump, as well as other important data.

Series	PMS	Standard
	PMS-T	Expanded temperature range
Size (delivery head)	4-12, 15, 17, 20, 30, 38, 48	4 to 12 m, 15 m, 17 m, 20 m, 30 m, 38 m, 48 m
Immersion depth	90 to 560	90 to 560 mm

Designation	PMS	7	в	350
Series				
Size				
Generation counter				
Immersion depth t in mm				

3.2 PSH series

Metal **PSH** centrifugal pumps for contaminated fluids are available in 14 different sizes. The sizes differ chiefly in terms of dimensions and delivery output, but offer the same functions.

See the rating plate for the size and designation of your pump, as well as other important data.

Series	PSH	
Size	6-9, 65;75;85;95, 630-670, 740	
Generation counter	B and C	
Immersion depth	300 to 550	300 to 550 mm

Table 2 Ty	pe code				
Designation		PSH	740	в	300
Series					
Size					
Generation counte	er				
Immersion depth	t in mm				

3.2 ES series

3. Assemblies and type designation

ES centrifugal immersion pumps made of welded stainless steel are available in one size with immersion depths of 170, 220 or 270 mm.

Table 3 Type code

3.3 PS/PSL series

Metal **PS** and **PSL** centrifugal pumps for clean, contaminated and viscous fluids are available in 14 different sizes. The sizes differ chiefly in terms of dimensions and delivery output, but offer the same functions.

See the rating plate for the size and designation of your pump, as well as other important data.

Series	PS PSL	Standard Slurp design
Size	1 and 3	
Number of stages	1-7	1-7 stages
Pump code number	10-85	
Generation counter	A and C	
lmmersion depth	250 to 670	250 to 670 mm

Table 4 Type code						
Designation	PS	1	2	30	Α	390
Series						
Size						
Number of stages						
Pump code number						
Generation counter						
Immersion depth t in mm						

E

Page 12

PMS/PMS-T centrifugal immersion pumps are turbo pumps that transport fluids by means of rotating impellers utilizing centrifugal force.

EN

4. Design and function

4.1 PMS/PMS-T

The pumps are utilized in suction operation. They are designed for vertical installation. **Figure 1** shows the basic structure of the

centrifugal pumps. The electric drive (1) is seated on the pump

port (2). The pump port contains the pump shaft bearing mounting, the seal, the connecting flange (3) for mounting on a reservoir, and the pressure port (4).

One or more impellers feed the medium to the pressure port (4) through the intake opening (6) located in the pump bottom (5). The electrical connection is established in the terminal box (7).

The pumps can optionally be equipped with an intake pipe in case of non-standard immersion depths.

Figure 1. Design of the PMS/PMS-T pump

1 Drive 2 Pump port 3 Connecting flange 4 Pressure port 5 Pump bottom 6 Intake opening

7 Terminal box

4.2 PSH

Figure 2 Design of the PSH pump

- 1 Drive
- 2 Pump port
- 3 Connecting flange
- 4 Pressure port
- 5 Pump bottom
- 6 Intake opening
- 7 Terminal box

PSH centrifugal immersion pumps are turbo pumps that transport fluids by means of rotating impellers utilizing centrifugal force. The pumps are utilized in suction operation. They are designed for vertical installation.

Figure 2 shows the basic structure of the centrifugal pumps.

The electric drive (1) is seated on the pump port (2).

The pump port contains the pump shaft bearing mounting, the seal, the connecting flange (3) for mounting on a reservoir, and the pressure port (4).

One or more impellers feed the medium to the pressure port (4) through the intake opening (6) located in the pump bottom (5). The electrical connection is established in the terminal box (7).

4.1 ES

Figure 3 Design of ES pump

1 Drive 2 Pump port 3 Connecting flange 4 Pressure port 5 Pump bottom 6 Intake opening 7 Terminal box 8 End shield **ES** stainless steel centrifugal pumps are turbo pumps that transport fluids by means of rotating impellers utilizing centrifugal force. The pumps are utilized in suction operation. They are designed for vertical installation.

Figure 3 shows the basic structure of the centrifugal pumps.

The electric drive (1) is screwed onto the end shield (8).

The end shield is seated on the pump port (2) and contains the pump shaft bearing mounting and the seal.

The connecting flange (3) for mounting on a reservoir and the pressure port (4) are located on the pump port.

An impeller feeds the medium to the pressure port (4) through the intake opening (6) located in the pump bottom (5). The electrical connection is established in the terminal box (7).

4.4 PS/PSL

Figure 4 Design of the PS/PSL pump

1 Drive 2 Pump port 3 Connecting flange 4 Pressure port 5 Pump bottom 6 Intake opening 7 Terminal box 8 End shield **PS/PSL** centrifugal pumps are turbo pumps that transport fluids by means of rotating impellers utilizing centrifugal force. The pumps are utilized in suction operation. They are designed for vertical installation.

Figure 4 shows the basic structure of the centrifugal pumps.

The electric drive (1) and the end shield (8) are connected using a screw.

The end shield is seated on the pump port (2) and contains the pump shaft bearing mounting and the seal.

The connecting flange (3) for mounting on a reservoir and the pressure port (4) are located on the pump port.

An impeller feeds the medium to the pressure port (4) through the intake opening (6) located in the pump bottom (5).

On the **PSL** with <u>slurp design</u>, the intake opening (6) contains an additional axial impeller that ensures stable feeding of heavily aerated fluids.

The electrical connection is established in the terminal box (7).

5. Assembly instructions

Only qualified technical personnel may install, operate, maintain, and repair the products described in the assembly instructions. Qualified technical personnel are persons who have been trained, assigned and instructed by the operator of the final product into which the described product is incorporated. Such persons are familiar with the relevant standards, rules, accident prevention regulations, and operating conditions as a result of their training, experience, and instruction. They are qualified to carry out the required activities and in doing so recognize and avoid potential hazards.

The definition of qualified personnel and the prohibition against employing non-qualified personnel are laid down in DIN VDE 0105 and IEC 364.

Before assembling/setting up the product, remove the packaging material and any shipping braces (e.g., plugs on suction or pressure port). Keep the packaging material until any discrepancies have been resolved.

Do not tilt or drop the product. During all assembly work on machinery, observe the local accident prevention regulations as well as the applicable operating and maintenance specifications.

5.1 Setup

PMS/PMS-T, PSH, ES, PS/PSL immersion pumps are designed for vertical reservoir installation.

The pumps are equipped with a 4-hole connecting flange with standard port dimensions (see "Technical data") for assembly.

When selecting the installation location, ensure sufficient space for installation, cabling, inspection, and venting. The distance between the air inlet on the motor and the walls, components, etc. must be at least $\frac{1}{4}$ of the diameter of the air inlet opening. The direction of the air flow is from the air inlet opening to the pump.

The product should be protected from humidity and vibration, and should be mounted so that it is easily accessible, allowing all further installation work to be done without difficulty. Ensure that there is sufficient air circulation to prevent excessive heating of the product. For the maximum permissible ambient temperature, see "Technical data."

An intake pipe can be ordered and included with the **PMS/PMS-T, PSH** and **PS** pump

series. Before assembling the pump, this pipe must be screwed tight into the suction housing using a tapered thread. Select the sealing material based on the operating conditions and temperature. When inserting the intake pipe, the sealing material must not enter the pump chamber or the inner area of the pipe.

F

When setting up the pump, observe the highest permissible fluid level and the minimum fluid level.

(see Figures 5 and 6)

The mounting position of the products is vertical as shown in the customer documentation.

If no customer documentation is available, you can request the customer documentation directly from SKF Lubrication Systems Germany GmbH. When switching on the pump, the minimum fluid level must be above the lowest pump chamber ① (o = see "Technical data"). The pump then feeds up to the intake opening in the chamber. The highest permissible fluid level is 20 mm below the reservoir cover ②.

When setting up the pump, observe the highest permissible fluid level and the minimum fluid level.

(see Figures 7 and 8)

The mounting position of the products is vertical as shown in the customer documentation.

If no customer documentation is available, you can request the customer documentation directly from SKF Lubrication Systems Germany GmbH. When switching on the pump, the minimum fluid level must be above the lowest pump chamber \oplus .

The pump then feeds up to the intake opening in the chamber. The maximum permissible fluid level is 20 mm on the **ES** and 40 mm on the **PS/PSL** below the reservoir cover[®].

Εľ

5.2 Port dimensions

Flange and port dimensions depend on the pump series and their sizes. (see "Technical data" for further information)

5.3 Pipe arrangement

When arranging the lines, observe the following instructions to ensure that the supply circuit functions smoothly.

- All line components such as pipes, shut-off devices, valves, etc. that come into contact with the medium must be cleaned thoroughly. No seals in the lines may protrude inwards so that contaminants cannot enter the pump and damage or destroy the pump.
- Only use pipes or hoses suitable for the operating pressure of the specific pump, the prevailing temperatures, and the media that will be fed.
- The lines must be connected in such a way that no forces are transferred to the pump (stress-free connection).
- The flow of medium in the lines should not be impeded by the incorporation of sharp bends, angle valves, or flap valves. Unavoidable changes in the cross-section

in the feed paths must have smooth transitions.

- The lines must always be free of leaks and arranged so that air pockets cannot form anywhere.
- •
- The pipes should always rise upward. Delivery lines should be ventable at the highest point.
- The cross-section of the delivery line should be sized at least as large as the cross-section of the pressure connection port.
- It is recommended that a backflow preventer be integrated in case of high delivery heads, long pipes, and pumps in suction operation. The backflow preventer keeps the pump from running empty after the pump is switched off.

5.4 Pipe connection

When connecting the pressure line using a hose nozzle, ensure that the hose does not become kinked.

Connect the pipes to the provided connection port on the pump. In doing so, ensure that no forces are transferred to the pump.

It is recommended that a pressure gauge and a shutoff valve be installed directly on the pipe connection port, as the pipe resistance is not always

known. The manometric delivery head can be read directly, or it can be set to the pipe resistances by gradually closing the shutoff valve while reading the fluid level.

5.5 Electrical connection

Electrical connections for the pump may only be established by qualified and trained personnel. The instructions in these operating instructions must be observed.

The pump motor must be connected according to the specifications on the rating plate and the mains voltage.

Establish the connection in accordance with the relevant VDE standards, for example VDE 0100, VDE 0101 and VDE 0165, and the conditions for connections of the responsible power-supply companies.

The cables and lines must be fastened using a cable fitting with strain relief in the terminal box.

Implement the circuit according to the wiring diagram on the motor's terminal box.

If a pump has been stored unused in a humid area for an extended time, it is recommended that the insulation resistance of the winding against the housing be measured before startup. On low-voltage motors, the minimum value at a winding temperature of approx. 20 °C is 1 k Ω per volt of rated voltage. If the resistance is lower than this, the motor must be dried in a warm area or using heaters until the required insulation value is attained.

5.6 Direction of rotation

The direction of motor rotation must match the arrow on the pump. To check the direction of rotation, open the valves in the delivery and intake lines and switch on the motor briefly (approx. 1 s).

PMS, PMS-T, PSH, ES

Direction of rotation: <u>counterclockwise</u> as viewed from above looking down on the vent side of motor. The pump will be damaged if the direction is incorrect.

PS, PSL

Direction of rotation: <u>clockwise</u> as viewed from above looking down on the vent side of motor. The pump will be damaged if the direction is incorrect.

The pump will be damaged if the direction of rotation is incorrect.

Short-term dry running is permitted.

Product designation Centrifugal pump

Product series: PMS... / PMS-T / PSH... ES... / PS... / PSL... /

Operating instructions

6. Transport, delivery, and storage

SKF Lubrication Systems Germany GmbH products are packaged in accordance with standard commercial practice according to the regulations of the recipient's country and DIN ISO 9001. Safe handling must be ensured during transport. The product must be protected from mechanical effects such as impacts. The transport packaging must be marked "Do not drop!".

Do not tilt or drop the product.

There are no restrictions for land, air or sea transport.

Upon receiving the shipment, please check the product(s) for possible damage, and ensure that the shipment is complete according to the shipping documents. Keep the packaging material until any discrepancies have been resolved.

SKF Lubrication Systems Germany GmbH products are subject to the following storage conditions.

6.1 Pump units

- The pump must be transported properly using the lifting eyes.
- Ensure that the storage environment is dry, dust-free and low-vibration (v_{eff} ≤ 0.2 mm/s). The grease service life of the bearings is reduced over an extended period of storage.
- If the product is stored for more than 12 months, inspect the condition of the grease before recommissioning. The insulation resistance of the motor winding against the housing must also be measured. Dry the motor winding if the values are $\leq 1 \text{ k}\Omega$ per volt of rated voltage.

6.2 Electronic and electrical devices

- Ambient conditions: dry and dust-free surroundings, storage in well ventilated dry area
- Storage time: max. 24 months
- Permissible humidity: < 65%
- Storage temperature: +10 to + 40□
- Light: avoid direct sun or UV exposure and shield nearby sources of heat

6.3 General notes

- The product(s) can be enveloped in plastic film to provide low-dust storage.
- Protect against ground moisture by storing on a shelf or wooden pallet.
- Bright-finished metallic surfaces, especially wearing parts and assembly surfaces, must be protected using long-term anti-corrosive agents before storage.
- At approx. 6-month intervals: Check for corrosion. If there are signs of corrosion, reapply anti-corrosive agents.
- Drives must be protected from mechanical damage.

7. Operation and commissioning

Inspect all connections before commissioning the pump. It is imperative that the suction port and pressure port of the pump be open.

The pump must run smoothly and evenly. To inspect, you can remove the fan cowl and manually turn the pump shaft on the fan impeller several times. Reinstall the fan cowl after inspection.

Check the direction of pump rotation during startup. The direction of rotation must match the arrow on the pump housing or fan cowl.

The pump must always be filled with fluid for pumping to maintain its self-priming capability. Before startup, fill the pump with fluid for pumping.

The pump must not run dry. An incorrect direction of rotation and/or dry running can damage the pump.

Ensure that there is no excessive dirt/contamination in the reservoir or pipe system and that the upstream filter functions properly.

Bring the pump into operation as follows:

- Completely open the pressure-side shutoff valve (if present) or ensure that the connection on the pressure side is free.
- Ensure that the pump chamber is filled with fluid.
- Switch on the pump and check the direction of rotation. The direction of rotation must match the arrow on the pump housing or fan cowl.
- Run the pump until the feeding process stabilizes and the medium no longer contains air bubbles.
- You can now set the desired delivery rate by adjusting the pressure-side shutoff valve.

The pumps should be used in continuous operation to the extent possible. If this is not possible due to the specifics of the process, the constant flow from the pump can be regulated, for example using a control valve or similar.

Please consult your supplier if the pump will run in intermittent operation with short intervals.

The pump may only operate within the specified delivery range. See the rating plate on the pump for the relevant key data.

When the pump operates without interruption, the minimum fluid level can fall to the intake opening. It must be ensured that the fluid level does not fall further during pump operation to prevent the pump from running dry. A backflow preventer is recommended for high delivery heads, long pipes, and pumps in suction operation. This prevents the pump from running empty after it is switched off.

Touching the rotating impeller during startup, shutdown, trial run, setup, fault-finding, fault resolution, maintenance, or inspection can result in severe injury.

Touching the pump in the area of the intake opening is prohibited during operation.

8. Shutdown

8.1 Temporary shutdown

The described product can be shut down temporarily by disconnecting the electrical and hydraulic supply connections. The instructions in the "General information" chapter in these assembly instructions must be observed when doing so.

If the pump will be shut down temporarily, oil preservation should be applied to prevent the parts in the pump housing from seizing due to rust.

If the product is to be shut down for an extended period of time, follow the instructions in the "Transport, delivery, and storage" chapter in these assembly instructions.

To recommission the product, follow the instructions in the "Assembly instructions" and "Operation and commissioning" chapters in these assembly instructions.

8.2 Permanent shutdown

If the product will be permanently shut down, the local regulations and laws regarding the disposal of contaminated equipment must be observed.

Media can contaminate soil and bodies of water. Media must be used and disposed of properly. Observe the local regulations and laws regarding the disposal of media.

The product can also be returned to SKF Lubrication Systems Germany GmbH for disposal, in which case the customer is responsible for reimbursing the costs incurred.

9. Maintenance

9.1 General notes

Performing work on an energized pump or product may result in serious injury or death. Assembly, maintenance, and repair work may only be performed on products that have been de-energized by qualified technical personnel. The supply voltage must be switched off before opening any of the product's components.

The described product is pressurized during operation. The product must therefore be depressurized before starting assembly, maintenance or repair work, or any system modifications or system repairs.

Touching the rotating impeller during startup, shutdown, trial run, setup, fault-finding, fault resolution, maintenance, or inspection can result in severe injury.

Touching the pump in the area of the intake opening is prohibited during operation.

PMS/PMS-T, PSH, ES, PS/PSL centrifugal pumps are largely maintenance-free. However, you should inspect the pump for external damage and leaks at regular intervals to ensure proper function.

Inspect media and pre-filters or strainers for contamination at regular intervals and clean or replace as necessary.

Ensure that the housing of the pump motor is kept free of dust, foreign substances, etc. to provide good heat exchange between the motor and the ambient air and maintain proper surface cooling.

Cables and lines must be inspected for damage and secure electrical connection at regular intervals.

If a pump has been stored unused in a humid area for an extended time, it is recommended that the insulation resistance of the winding against the housing be measured before startup. On lowvoltage motors, the minimum value at a winding temperature of approx. 20 °C is 2 megaohm. If the resistance is lower than this, the motor must be dried in a warm area or using heaters until the required insulation value is attained. Any faults found must be properly rectified before the pump is restarted.

Dismantling of the product or individual parts thereof within the statutory warranty period is not permitted and voids any claims.

Only original spare parts from SKF Lubrication Systems Germany GmbH may be used. Unauthorized alterations to products and the use of non-original spare parts and accessories are prohibited and nullify the statutory warranty.

SKF Lubrication Systems Germany GmbH shall not be held liable for damages resulting from improperly performed assembly, maintenance or repair work on the product.

All parts must be handled with utmost care during assembly and disassembly. Jolts and impacts must be avoided.

Thoroughly clean all parts and furbish or replace them with spare parts as necessary.

Unauthorized alterations to the pump and the use of unapproved spare parts and accessories are prohibited and nullify the warranty.

10. Faults

Dismantling of the motor and pump functional assemblies within the statutory warranty period is not permitted and voids any claims.

Only original spare parts from SKF Lubrication Systems Germany GmbH may be used. Unauthorized alterations to products and the use of non-original spare parts and accessories are not permitted.

All actions such as repairs, part replacement, etc. may only be performed by qualified and trained personnel.

0

Repair work may only be performed on units that have been de-energized by qualified and trained personnel. Performing work on energized units may result in serious injury or death.

Table 3, "Fault analysis and rectification," providesan overview of possible malfunctions and theircauses. Contact the Service department of SKFLubrication Systems Germany GmbH if you cannotremedy the malfunction.

Table 3 Fault analysis and rectification

Malfunction	Possible cause	Rectification
Motor does not start	Power connection defective	Check the power connection
	Fuse tripped	Check the fuse or the motor circuit breaker
	Motor circuit breaker tripped	 Ensure that: The pump shaft runs smoothly and evenly The values on the rating plate match the power supply The resistance of the winding against the housing is at least 2 megaohm Then switch the motor circuit breaker on again.
	PTC thermistor upper temperature exceeded	 Ensure that: Surface cooling is not impeded The ambient temperature is below the maximum permissible value The pump is not overloaded1) Then switch the motor circuit breaker on again
	Switching contacts or motor coil defective	Replace defective parts
Motor circuit breaker is triggered immediately after being switched on	Fuse is tripped because a phase is absent	Check the connection of the terminal board Check the fuse and replace it if necessary
	Motor circuit breaker defective	Replace motor circuit breaker
	Cable connection loose or defective	Fasten the cable connections or replace the cable
	Motor winding defective	Replace motor
	Motor circuit breaker set too low	Set the motor circuit breaker to the value specified on the rating plate and ensure that the pump is not overloaded $^{\rm 1\!\!0}$
	Motor shaft jammed	Remedy the jam Ensure that the pump shaft runs smoothly and evenly
	Pump overloaded ¹⁾	Check the pump and voltage parameters
1) Among that factors that can result in pump overload	d are: viscosity and temperature of the medium,	delivery rate, delivery head, ambient temperature, and degree of contamination.

Continuation	of Table 3	3 Fault	analysis	and	rectification
--------------	------------	---------	----------	-----	---------------

Malfunction	Possible cause	Rectification							
Motor circuit breaker is triggered occasionally	Motor circuit breaker set too low	Set the motor circuit breaker to the value specified on the rating plate and ensure that the pump is not overloaded $^{1\!\mathrm{j}}$							
	Power supply not constant	Check the connection of the terminal board Check the fuse and replace it if necessary							
	Mains voltage temporarily too low	Ensure that the values on the rating plate match the power supply Select a power supply with constant voltage							
Pump output unstable	Intake partially clogged	Check the intake opening and clean it if necessary							
	Pump draws air	Check the fill level of the pump and correct if necessary							
	Incorrect installation	See the "Assembly instructions" chapter							
Pump runs but does not deliver medium	Intake opening clogged	Check the intake opening and clean it if necessary The medium may be heavily contaminated and need to be replaced.							
	Pipe extension leaky	Check the pipe extension and remedy any leaks.							
	Pump lacks medium for pumping	Check fill level and correct if necessary							
	Air pockets in the pump	Vent the pump							
	Wrong direction of rotation	Change direction of rotation according to wiring diagram							
	Shutoff valve closed	Open the shutoff valve							
Noises, vibrations, or leaks	Pump draws air	Check the fill level of the pump and correct if necessary							
	Suction head too low	Increase fluid level or suction head							
	Shaft bearing mounting defective	Replace shaft bearing mounting							
1) Among that factors that can res	sult in pump overload are: viscosity and temperature of the mediu	m, delivery rate, delivery head, ambient temperature, and degree of contamination.							

Page 30

Continuation of Table 3 Fault analysis and rectification

Malfunction	Possible cause	Rectification
Noises, vibrations, or leaks	Shaft seal defective	Replace shaft seal
	Endplay of pump incorrect	Set endplay
	Pump not mounted securely	Fasten connecting flange
Pump shaft rotates with difficulty	Pump blocked	Check the intake opening and clean it if necessary
	Impeller scrapes/rubs	Ensure that the impeller is properly fastened and that the pump shaft is not bent or off-center
	Shaft bearing mounting defective	Replace shaft bearing mounting

Performing work on an energized pump or product may result in serious injury or death. Assembly, maintenance, and repair work may only be performed on products that have been de-energized by qualified technical personnel. The supply voltage must be switched off before opening any of the product's components.

The hot surface of a motor may cause burns. Motor surfaces may only be touched with appropriate gloves or after the motor has been shut off for an extended time.

Feeding systems are pressurized during operation. The pumps must therefore be depressurized before starting assembly, maintenance or repair work, or any system modifications or system repairs.

11. Technical data

11.1 Features of PMS/PMS-T

- Sealless
- Exposed pump shaft, mounted only in the motor
- Open impellers
- 1- to 4-stage designs
- Mounting dimensions as per DIN EN 12157
- Immersion depths up to 560 mm

11.2 Features of PSH

- Sealless
- Exposed pump shaft, mounted only in the motor
- Open impellers
- 1- to 2-stage designs
- Mounting dimensions as per DIN EN
 12157
- Immersion depths up to 550 mm

11.3 Features of ES

- Sealless
- Open impeller
- 1-stage design
- Mounting dimensions as per DIN EN 12157
- Immersion depths up to 270 mm

11.4 Features of PS/PSL

- Sealless
- Closed impellers
- 1- to 7-stage designs
- Mounting dimensions as per DIN EN 12157
- Immersion depths up to 670 mm

11.5 Mechanical design of PMS/PMS-T

Componen t	Material on PMS	Material on PMS- T					
Motor	Aluminum	Aluminum					
housing							
Pump port	GCI and steel	GCI and steel					
Pump	POM	GCI					
bottom							
Intermediat	GCI	GCI					
e chamber							
Impeller	POM	GCI					
Shaft	ETG	ETG					
Rolling	Deep groove	Deep groove ball					
bearings	ball bearings	bearings with					
	with permanent	special lubricating					
	lubrication	grease					
Splash ring	NBR	Steel					

11.6 Mechanical design of PSH

Component	Material
Motor housing	Aluminum
Pump port	GCI
Pump bottom	GCI
Intermediate	GCI
chamber	
Impeller	GCI
Shaft	ETG up to 4 kW
	Free cutting steel at > 5.5 kW
Rolling bearings	Deep groove ball bearings and
	angular contact ball bearing
	(BEGP)

11.7 Mechanical design of ES

Component	Material
Motor housing	Aluminum
Uptake and support	1.4301
pipe	
Pump support	Aluminum
Pump bottom	1.4301
Impeller	1.4301
Shaft	Stainless steel 1,422
Rolling bearings	Deep groove ball bearings

ΕN

ΕN

11.8 Mechani	11.8 Mechanical design of PS/PSL		Standard	Option		PS/PSL, PSH	
		Protection class	PMS IP54	IP55		>4 KW	
Component	Material	(DIN EN 60034-	PSH IP54			Light alloy	
Motor housing	Aluminum	5)	ES: 1P54		-Cable entry (DIN	M16x1.5	Industrial
Pump port	GCI	Insulation class	F R	PMS F	EN 50262)	M25x1.5	plug
Pump bottom	GCI	Amhient	max 400	50°C and		M32x1.5	connector
Intermediate	GCI	temperature (DIN	max. 405	higher	Surface	Synthetic-resin	Special
chamber		EN 60034-1)		ingilei	protection	varnish, RAL	finishes on
Impeller	GCI	, Relative humidity	max. 92%	95% and		9005	request
Shaft	ETG up to 4 kW	(DIN 50015)		higher	Special protection		Integrated
	Free cutting steel at > 5.5	Site altitude (DIN	< 1000 m	on request			thermistor-
	kW	EN 60034-1)	above sea level				type motor
Rolling bearings	Deep groove ball bearings	Power supply	230/400 V, 50	on request			protection,
Bushing	Sintered iron with copper	(standard)	Hz 265/460 V,				fan cowl with
			60 Hz				canopy
11 9 Electrica	l design						
			PS/PSL, PSH >4 kW				
The drive motors	meet VDF regulations and		∆400 V. 50 Hz				
Furonean motor	standards (DIN EN 60034-1)		∆440 V, 60 Hz				
as well as the req	uirements for the CE mark.	Mains operation	Three-phase	PMS Single- phase AC			
Designs are possi	ible that conform to non-	Number of pins	2-pin	PMS 4-pin			
European regulat special requireme	ions, e.g. CSA, UL or ents, e.g. for the USA or Japan.	Terminal box					
		-Layout	Layout 1	Layout 2, 3, or 4			
		-Material	High-impact plastic				

EI

11.10 Dimensions of PMS/PMS-T

Figure 9 PMS, PMS-T

Model	t [mm]	Weig ht [kg]	l	Øm	Øa	Øb -0.2	С	Ød	Øe	Øf	g	h	i	k*	0	Vented motors
PMS4C PMS5B	90 120 140 200 220 250 270 350	4.4 5	150	96	130	100	6	99	115	7	25	G¾	70	88	45	-
PMS6C	120 170 220 250 270 350	4.4 5	168	96	130	100	6	99	115	7	25	G¾	70	88	45	-
PMS7B	90 120 140 200 220 250 270 350	6.3 7.3	162	120	130	100	6	99	115	7	25	G3⁄4	70	98	45	-
PMS9C PMS11C	170 200 270 350 440 550	13.2 16.3	241	140	180	140	9	140	160	7	30	G1¼	95	112	48	х

Dimensions and weights

* The terminal box is approx. 20 mm higher on CSA-USA designs, at high insulation classes, or when thermistors are used in the terminal boxes.

k

U

ØШ

Øb Øa

0

							-									
Model	t [mm]	Weig ht [kg]	l	Øm	Øa	Øb -0.2	с	Ød	Øe	Øf	g	h	i	k*	0	Vented motors
PMS15D	210 240 280 320 360 560	23 26	291	176	180	140	9	140	160	7	32	G1¼	100	149	55	х
PMS17C	210 310 350 390 440	15.7 17	241	140	180	100	9	140	160	7	30	G1¼	95	112	88	х
PMS20D	270 310 350 390 480	24 27.5	291	176	180	140	9	140	160	7	32	G1¼	100	149	85	х
PMS20C	270 310 350 390	16.3 17.2	241	140	180	140	9	140	160	7	30	G1¼	95	112	88	х
PMS30D PMS38D	280** 310 350 390 430	26.5	291 317	176	180	140	9	140	160	7	32	G1¼	100	149	125	Х

Dimensions and weights

Ød

* The terminal box is approx. 20 mm higher on CSA-USA designs, at high insulation classes, or when thermistors are used in the terminal boxes.

140

9 140

160

7 32

G1¼

100

149

165

Х

** Immersion depth is 280 mm only on PMS38D.

29

31.5

317

176

180

430 350

390

430

470

PMS48D

Figure 10 PMS, PMS-T

ΕN

EN

	Dimensions and weights															
Model	t [mm]	Weig ht [kg]	l	Øm	Øa	Øb -0.2	с	Ød	Øe	Øf	g	h	i	k*	0	Vented motors
PMS5BT	120 170 220 270 350	6 7	168	96	130	100	6	99	115	7	25	G¾	70	108	45	-
PMS6CT PMS7BT	120 170 220 250 270 350	9 11	180	120	130	100	6	99	115	7	25	G¾	70	118	45	-

Figure 11 PMS, PMS-T

ΕN

11.11 Dimensions of PSH

Dimensions and weights					
Madal	t	Weight	Øm	k	l
Model	[mm]	[kg]	[mm]	[mm]	[mm]
PSH6B	300/500	49/62.5	176	149	362
PSH65C	300/500	52/62.5	260	182	488
PSH7B	300/500	49/62.5	176	149	362
PSH75C	300/500	72/85.5	260	149	488
PSH740B	300/500	49/62.5	176	155	362
PSH8B	350	66	196	182	412
PSH85C	350	83	260	182	488
PSH9C	350	84	260	182	488
PSH95C	350	84	260	182	526
PSH630B		43			337
PSH640B					377
PSH650B	300		176	149	362
PSH660B					362
PSH670B		44			362

Figure 12 PSH, 2-stage and 1-stage

EN

11.12 Dimensions of ES

Weight: approx. 10 kg Immersion depth [t]: 170 mm, 220 mm and 270 mm

Figure 13 ES

11.13 Dimensions of PS/PSL

Dimensions and weights					
Model	t [mm]	Weight [kg]	Øm [mm]	k [mm]	l [mm]
PS/PSL1110A	250 320 450 550	30 36	140	114	305
PS/PSL1230A	320 390 520 620	42 48	176	149	347.5
PS/PSL1340A	390 460 590	53 56	176	149	347.5
PS/PSL1450A	460 530 660	62 65	196	155	380
PS/PSL1556C	530 600	72 74	260	182	484
PS/PSL1664C	600	83	260	182	484
PS/PSL1770C	670	132	260	182	484

Figure 14 PS/PSL

Øm k k k

Dimensions and weights					
Model	t	Weight	Øm	k	l
	[mm]	[kg]	[mm]	[mm]	[mm]
	250	34			
PS/PSL3123A	320	174	176	149	347.5
1-stage	450		1/0		
	550	40			
	320	42			
PS/PSL3243A	390		176 14	1/0	347.5
2-stage	520			147	
	620	48			
PS/PSL3357C	390	54	260	182	484
	460				
3-stage	590	56			
PS/PSL3466C	460	83	260	192	4.84
4-stage	530	85	200	102	404
PS/PSL3574C	530	113	260	190	522
5-stage	600	115	200	102	522
PS/PSL3664C	600	120	260	182	522
6-stage					
PS/PSL3785C	670	136	260	182	580
7-stage					

Figure 15 PS/PSL

12. Notes

Order number: 951-170-025

Subject to change without notice.

The contents of this publication are the copyright of the publisher and may not be reproduced in whole or in part without permission of SKF Lubrication Systems Germany GmbH. Every care has been taken to ensure the accuracy of the information contained in this publication. However, no liability can be accepted for any loss or damage, whether direct, indirect or consequential, arising out of use of the information contained herein.

All SKF Lubrication Systems Germany GmbH products may be used only for their intended purpose as described in these assembly instructions with associated operating instructions. If assembly/operating instructions are supplied together with the products, they must be read and followed.

Pump units manufactured by SKF Lubrication Systems Germany GmbH are not approved for use in conjunction with gases, liquefied gases, pressurized gases in solution, vapors, or such fluids whose vapor pressure exceeds normal atmospheric pressure (1013 mbar) by more than 0.5 bar at their maximum permissible temperature.

Particular attention is called to the fact that hazardous materials of any kind, especially those materials classified as hazardous by EC Directive 67/548/EEC, Article 2, Para. 2, may only be filled into SKF Lubrication Systems Germany GmbH centralized lubrication systems and components and delivered and/or distributed with such systems and components after consulting with and obtaining written approval from SKF Lubrication Systems Germany GmbH.

SKF Lubrication Systems Germany GmbH

Product department Spandau Pumpen

Berlin Plant Motzener Strasse 35/37 12277 Berlin Germany Tel. +49 (0)30 72002-0 Fax +49 (0)30 72002-261

SpandauPumpen@skf.com www.spandaupumpen.com

Spandau pumpen